Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Commun ; 12(1): 6610, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1521737

ABSTRACT

COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.


Subject(s)
COVID-19/pathology , Intestinal Mucosa/virology , Organoids/virology , SARS-CoV-2/physiology , Stomach/virology , Virus Replication/physiology , Aborted Fetus , Aged , Animals , COVID-19/virology , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Humans , Infant , Intestinal Mucosa/pathology , Middle Aged , Organoids/pathology , SARS-CoV-2/isolation & purification , Stomach/pathology
2.
Expert Rev Clin Immunol ; 17(6): 553-560, 2021 06.
Article in English | MEDLINE | ID: covidwho-1165061

ABSTRACT

Background: COVID-19 has caused calamitous health, economic and societal consequences globally. Currently, there is no effective treatment for the infection. Areas covered: We have recently described the NZACE2-Patari project, which seeks to administer modified Angiotensin Converting Enzyme 2 (ACE2) molecules early in the infection to intercept and block SARS-CoV-2 binding to the pulmonary epithelium. Expert opinion: Since the nasopharyngeal mucosa is infected in the first asymptomatic phase of the infection, treatment of the nose is likely to be safe and potentially effective. The intercepted virus will be swallowed and destroyed in the stomach. There is however a limited window of opportunity to alter the trajectory of the infection in an individual patient, which requires access to rapid testing for SARS-CoV-2. The proposed strategy is analogous to passive immunization of viral infections such as measles and may be of particular benefit to immunodeficient and unvaccinated individuals.


Subject(s)
Angiotensin-Converting Enzyme 2/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Nasopharynx/virology , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , Stomach/virology , Administration, Intranasal , COVID-19/enzymology , COVID-19/virology , Host-Pathogen Interactions , Humans , SARS-CoV-2/pathogenicity , Treatment Outcome
3.
Cell Host Microbe ; 28(1): 124-133.e4, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-378130

ABSTRACT

Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for an animal model. Human angiotensin-converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) by using CRISPR/Cas9 knockin technology. In comparison with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea, and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected-aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was seen to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis and evaluating COVID-19 vaccines and therapeutics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections , Disease Models, Animal , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral , Aging , Angiotensin-Converting Enzyme 2 , Animals , Brain/virology , COVID-19 , CRISPR-Cas Systems , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Gene Knock-In Techniques , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/pathology , Nose/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Stomach/virology , Trachea/virology , Viral Load , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL